
Long wave asymptote for the Landau–Pomeranchuk–Migdal effect

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 1051

(http://iopscience.iop.org/0305-4470/37/3/033)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 1051–1057 PII: S0305-4470(04)64043-1

Long wave asymptote for the
Landau–Pomeranchuk–Migdal effect

A V Koshelkin

Moscow Institute for Physics and Engineering, Kashirskoye sh, 31, 115409, Moscow, Russia

E-mail: koshelkin@theor.mephi.ru and koshelkin@mtu-net.ru

Received 28 May 2003, in final form 23 September 2003
Published 7 January 2004
Online at stacks.iop.org/JPhysA/37/1051 (DOI: 10.1088/0305-4470/37/3/033)

Abstract
It is shown that non-small angle multiple elastic scattering in matter leads to
much stronger suppression of bremsstrahlung (BS) by high-energy particles
in the long wave range of emission spectrum compared with the quenching
predicted by Landau L� D and Pomeranchuk I Ya (1953 Dokl. Akad. Nauk SSSR
92 535, 735) and Migdal A B (1954 Dokl. Akad. Nauk SSSR 96 49, 1956 Phys.
Rev. 103 1811). This manifests itself as the rearrangement of the BS spectrum
of soft photons in the far long wave region.

PACS number: 12.15.Lk

1. Introduction

Soft photons are a very important source of information on the properties of matter. Since
the time of production of such particles is rather large they manage to ‘test’ the matter due to
interaction therein before they escape it. In this way, the more soft photons, the more detailed
information about the matter they carry.

The influence of scattering in matter on bremsstrahlung (BS) by high energy particles
was studied by Landau and Pomeranchuk [1, 2] for the first time. The suppression of the
intensity of the BS due to multiple elastic collisions of ultrarelativistic particles in matter (the
Landau–Pomeranchuk effect) was pointed out in those papers. The quantitative theory of this
effect has been derived by Migdal (the LPM effect ) in [3, 4]. The theory of the LPM effect has
been developed further in the study of the influence of the dispersion properties of scattering
matter [5, 6], its boundaries [7, 8] and the Coulomb scattering of particles in matter [9] on
the production of soft photons. In [10, 11] the BS in matter has been studied by means of
the method of continual integrals1. In this way the principal approximation used in the papers
mentioned above is the small angle scattering of particles in matter. As will be shown below

1 A detailed review of publications devoted to the LPM effect is given in [12].

0305-4470/04/031051+07$30.00 © 2004 IOP Publishing Ltd Printed in the UK 1051

http://stacks.iop.org/ja/37/1051


1052 A V Koshelkin

such an approach leads to the restriction to the application of the results obtained in [1–11] in
the far long wave region.

In the present paper we study the production of soft photons by high-energy particles
(E � ω, where E and ω are the energy of the particle and the photon, respectively) which
undergo multiple elastic collisions in amorphous infinite matter. It is shown that the BS in the
far long wave range of the spectrum is formed due to the crucially non-small angle scattering
of particles in the medium. This leads to dramatic differences of the spectral distribution of
the BS of soft photons compared with that calculated in [1–4].

The paper is organized as follows. In section 2 we present intuitive estimations of the
effect. In section 3 we study the soft BS by high-energy particles undergoing multiple elastic
collisions in matter. In section 4 the influence of the inelastic scattering of particles in a
medium on the emission spectrum is considered. Finally, in section 5 we present a brief
summary and concluding remarks.

2. Intuitive estimation

The main approximation used in [1–11] cited above is the small angle elastic scattering of
particles in matter. This also concerns the mean square of the multiple scattering angle of the
particle during the time of formation of the long wave photon under the LPM effect. Let us
calculate it.

Let us consider an ultrarelativistic particle undergoing multiple elastic collisions in infinite
homogeneous matter. We assume the mean square of the multiple scattering angle of the
particle per unit path length is q, but the photon energy is ω. Then, the time τ of photon
generation in the LPM effect is given by the formula [6, 12]

τ ∼ 1/
√

qvω

where v is the particle velocity (h̄ = c = 1).
Then, the mean square ϑ2

τ of the angle of multiple scattering of the particle under the
LPM effect (which should be small) is

ϑ2
τ = qvτ � qv

1√
qvω

=
√

qv

ω
� 1.

This means that the suppression of the BS in the form derived in [1–4] only takes place up
to frequencies ω � vq because of the approximation of the small angle scattering of particles
in matter which has been used therein.

In this way, we should note that, as well as multiple scattering, other mechanisms of
suppression of the soft BS in matter take place. They are pair creation and dispersion of the
medium [12].

The influence of these processes is significant when the length of photon production with
respect to them is less than the length Lms of photon emission due to multiple scattering in the
matter.

In particular, in electrodynamics the length of pair creation Lpc is of the order of X0,
where X0 is the radiation length [12]: Lpc ∼ X0. In the case of non-small angle of scattering
Lms can be estimated as Lms ∼ q−1. Then, the influence of the pair production on the photon
rate is strong when

X0 � q−1 ∼ X0

(
E

Es

)2

.

It follows from the last formula that pair creation is significant for rather fast electrons
whose energy is much greater than Es = m

√
4π/α = 21.2 MeV [12].
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As for the influence of the dispersion of a medium on the photon production in matter, it
strongly depends on the polarization properties of the scattering matter.

3. Bremsstrahlung by high-energy particles in matter in the long wave
region of the spectrum

Let us consider an ultrarelativistic particle undergoing multiple elastic collisions in infinite
scattering matter. We assume that the energy and mass of the particle are E and m, respectively.
According to [1–4] the spectral distribution of the emission energy of a particle when its energy
E is rather large, E � ω, is given by the following expression:

dEω

dω
= 2 Re

αω2

4π2

∫ ∞

−∞
dt

∫ ∞

0
dτ exp(−iωτ)

∫
d�1

∫
d�2

∫
d��n

×F1(�1, t)F2(�1;�2, �k, τ )(�n × �v1)(�n × �v2) (1)

where �v1 and �v2 are the velocities of the particle at moments t and t + τ ; ω is the emission
frequency (the photon energy); �k = ω�n is the wave vector of a photon; �1,�2,��n are the solid
angles along the directions of vectors �v1; �v2; �n, respectively, α is the fine structure constant
and h̄ = c = 1.

The distribution functions F1 and F2 satisfy [3, 4] the standard kinetic equation.

3.1. Diffusion approximation

Let us consider the situation when the angle of a single scattering of particles is much smaller
than the angle of their multiple scattering in the matter. We also assume that the distribution
function is a rather smooth function of its variables. Such a situation is known as the diffusion
approximation [13, 14]. Then, the function F2 satisfies the following equation:

∂F2(�1;�2, �k, τ )

∂τ
− i�k�v2F2(�1;�2, �k, τ ) = qv

4
�ϑ2,ϕ2F2(�1;�2, �k, τ ) (2)

F2(�1;�2, �k, τ = 0) = 1

2π
δ(cos ϑ1 − cos ϑ2) (3)

where �ϑ2,ϕ2 is the angle part of the Laplacian; ϑ2, ϕ2 are the polar and azimuth angles of the
velocity �v2 and q is the mean square of the angle of multiple scattering of a particle per unit
path length2.

Let us measure all angles from the direction of the vector �k. Then, it is convenient to
introduce the new variables z and s and the new function f2 according to the formulae

z2 =
√

ω

qv
sin2(ϑ2/2) s = τ · √

vqω (4)

F2 = f2 exp(ikvτ). (5)

Taking into account equations (2), (4) and (5) we derive the following equation for the
function f2:

∂f2(z, s)

∂s
+ 2ivz2 = 1

16

∂

∂z

[
z

(
1 − z2

√
qv

ω

)]
∂f2(z, s)

∂z
. (6)

2 The equation for the function F1 can be obtained setting �k = 0 in equation (2).



1054 A V Koshelkin

The term on the right-hand side of equation (6) which corresponds to the azimuth part of
Laplacian is omitted because of the axial symmetry of the considered problem.

In the case of the scattering of the particle through small angles, when ϑ2 � 1, it follows
from equations (4) that z2√qv/ω � 1. Then, ignoring the term containing the frequency ω

on the right-hand side of equation (6), we deal with the equation for the function f2 in the
small angle approximation [3, 4]. After the solution of such an equation and the substitution
of the obtained function f2 into formula (1) we come to Migdal’s spectral distribution [3, 4] of
the BS by an ultrarelativistic particle (v1). The long wave asymptote qv � ω � qv(1 − v)−2

of the emission energy found in [3, 4] takes the form (the LPM effect):

dEω

2T dω
= αv2(qvω)1/2

π
(7)

where dEω/2T dω is the energy emitted in unit time, and T is the observation time.
As has been shown above (see section 2 and the text before equation (7)) the spectral

distribution (7) is not applicable in the range of rather small frequencies ω � qv due to the
approach of small angle scattering of particles in matter which has been used in [3, 4].

Let us consider the situation when ω � qv, but the angles of multiple scattering are not
small. In this case the parameter z in equation (4) is small: z � 1. Then, omitting the last
term on the left-hand side of equation (6) we find the function F2(�1;�2, �k, τ ) satisfying
equations (2) and (3) at ω � qv:

F2(�1;�2, �k, τ ) = 1

2π

∞∑
0

(
2l + 1

2

)
Pl(cos ϑ1)Pl(ϑ2) exp

(
−qv

4
l(l + 1)τ

)
. (8)

The function F1 appearing in equation (1) can be obtained from equation (8) by means of
the substitutions cos ϑ2 → cos ϑ1 and cos ϑ1 → cos ϑk , where ϑk is the emission angle.

Inserting the obtained F1 and F2 in formula (1), we find

dEω

2T dω
= 4αvω2

3πq
. (9)

It follows from the spectral distribution (9) that dramatically stronger suppression
(dEω/2T dω ∝ ω2) of the BS in the far long wave range of the spectrum takes place compared
with the quenching (dEω/2T dω ∝ ω1/2) which has been predicted in [1–4] earlier. This is
connected directly with the fact that the angles of the multiple elastic scattering of the particle
in the matter are not small.

3.2. Long wave bremsstrahlung in matter beyond the diffusion approximation

Let us consider the emission by the high-energy particle when the diffusion approximation
with respect to the elastic collisions of the particle in matter does not hold, i.e. we study the
situation when the angles of both single and multiple scattering may have values of the same
order.

In this case the function F2(�1;�2, �k, τ ) (see equation (1)) satisfies the Boltzmann
equation in the general form instead of equation (2):

∂F2(cos θ1, cos θ2, τ )

∂τ
− i�k�v2F2(cos θ1, cos θ2, τ )

= ν

{∫ 1

−1
d(cos β)χ(cos(θ2 − β)) · F2(cos β, cos θ1, τ ) − F2(cos θ1, cos θ2, τ )

}

(10)
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where ν is the collision frequency of the particle in the matter and θ1 and θ2 are the polar
angles of the vectors �v1 and �v2. As above, all angles in equation (10) are measured from the
direction of the vector �k.

Both the collision frequency ν and function χ(cos θ) are determined by the individual
pair collisions of particles in matter. The collision frequency is connected with the total cross
section σ of the elastic scattering of particles in matter by means of the standard expression,

ν = n · v · σ (11)

while the function χ depends on both differential and total cross sections

χ(cos(θ)) = 2π dσ(cos(θ))

σ d�
(12)

where n is the density of scattering centres in the medium, v is the particle velocity and � is
the solid angle.

In case of the emission of rather soft photons ω � ν, we can neglect the left-hand side of
equation (10) which contains the vector �k. This is possible since at ω � ν the scattering of
the particle in matter is not small. Then, expanding F2 and χ in equation (10) in the complete
set of Legendre polynomials Pl(µ), we obtain

F2(ϑ1, ϑ2, τ ) =
∞∑
l=0

2l + 1

2
Pl(cos ϑ1)Pl(cos ϑ2) exp

(
−ντ +

2ν

2l + 1
· χl · τ

)
(13)

where χl is given by the formula

χl = 2l + 1

2

∫ 1

−1
χ(µ)Pl(µ). (14)

The function F1 appearing in equation (1) can be derived from equation (13) by means of the
substitutions cos ϑ2 → cos ϑ1 and cos ϑ1 → cos ϑk , where ϑk is the emission angle.

Substituting F1 and F2 given by equation (13) into formula (1) we get the spectral
distribution of the emission energy in the long wave region:

dEω

2T dω
= 2αv2ω2

3πν (1 − 2χ1/3)
ω � ν. (15)

It follows from the spectral distribution (15) that, as has been stated above (see
equation (9)), strong suppression of the BS by high-energy particles in the far long wave
range of the emission spectrum takes place. The quenching is significantly stronger
(dEω/2T dω ∝ ω2) than has been predicted in [1–4] where (dEω/2T dω ∝ ω1/2). Such
suppression, as it takes place in the case of diffusion approximation (see the text after
equation (9)), is connected directly with the non-small angles of scattering of the particle
in matter.

Note that the dependence of the emission energy on the photon energy is like that in the
diffusion approximation, while it only differs by the normalization factor.

4. Influence of inelastic scattering on the formation of the long wave
asymptote of bremsstrahlung in matter

In the diffusion approach the influence of inelastic collisions on the multiple elastic scattering
of particles in matter is determined by the relation between two parameters. They are, so
called, the transport length ltr � q−1 and the loss length lloss. In the case of collisions of
electrons in solids we have the following [14] for these characteristics:

lloss

ltr
� m(Z + 1)LC

ELi
(16)
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where Z is the charge of the nucleus and LC and Li are the Coulomb and ionization logarithms,
respectively. As a rule, we can approximately set LC ∼ Li. Then, in the case of rather heavy
materials, so that Z � E/m, we have ltr/lloss � 1 even for ultra-relativistic electrons (when
E/m � 10, for example). This means that there are some realistic situations when neglecting
the influence of the inelastic scattering on the production of the soft BS photons in matter is
absolutely correct. In such cases the BS spectrum is given by equation (9).

The situation becomes more complicated when the diffusion approximation is invalid.
In this case the distribution function F2 appearing in equation (1) satisfies the Boltzmann
equation in the following form [14]:

∂F2(cos θ1, cos θ2, τ )

∂τ
− i�k�v2F2(cos θ1, cos θ2, τ )

= ν

{∫ 1

−1
d(cos β)χ(cos(θ2 − β)) · F2(cos β, cos θ1, τ ) − F2(cos θ1, cos θ2, τ )

}

+
1

E

{∫ ∞

0

dε

E
w(E + ε)F2(cos β, cos θ1, τ ) − w(E)F2(cos θ1, cos θ2, τ )

}
(17)

where w(E) is the energy lost by the particle per unit time and E is the particle energy.
In the limit of the long wave photon ω � min(ν;w(E)/E) we can omit the term on

the left-hand side in equation (17) which contains the photon momentum �k. Although the
solution of equation (17) cannot be found in the explicit form it nevertheless does not depend
on the photon energy at ω � min(ν;w(E)/E). This means that after the substitution of F2,
satisfying equation (17), into formula (1) we go to the spectrum

dEω

2T dω
= 2αv2ω2

3πνtot
ω � νtot (18)

where νtot designates some frequency which characterizes the collision of the particle in matter.
It takes into account both elastic and inelastic impacts in the medium and does not depend on
the photon energy at E � ω.

It follows from equation (18) that the inelastic collisions only lead to the renormalization
of the emission rate but they do not change the dependence of the emission energy on radiation
frequency. It is obvious that the analogous renormalization also takes place in the diffusion
approximation at Z � (E/m).

We should note that even if the representation of the collision integral as the sum of the
elastic and inelastic parts (see equation (17)) is impossible the dependence of the emission
energy on the radiation frequency in the long wave range of the spectrum remains in force
and is given by equation (18). This is related to the fact that in such a region of the spectrum
we can ignore the term containing the photon momentum on the left-hand side of the kinetic
equation.

Thus, the dependence dEω/2T dω ∝ ω2 of the long wave BS in matter on photon energy
which is given by equation (18) is very general. It dramatically differs from the dependence
of the emission energy on radiation frequency in the case of the individual (non-coherent)
collisions of particles where dEω/2T dω does not depend on ω [15] at all. Such behaviour of
dEω/2T dω as a function of ω is directly related to the presence of the multiple scattering of
particles in matter.
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5. Conclusion

The far long wave BS by particles undergoing multiple scattering in matter is studied. It is
shown that the extremely soft BS is formed due to the crucially non-small angle of scattering of
particles in the medium. The spectral distribution of the BS of soft photons by such particles is
obtained. The calculated spectrum dramatically differs from that obtained before in [1–4]. The
differences manifest themself in the dependence of the emission energy on the parameters of
the problem studied (emission frequency and characteristics of scattering matter). In particular,
much more suppression of the soft BS takes place compared with the quenching predicted
in [1–4].

The influence of inelastic collisions on the BS spectrum in matter is studied. It is shown
that the inelastic scattering renormalizes the value of the intensity of the BS but does not
change the dependence of the emission energy on the radiation frequency compared with the
case when only elastic collisions take place.
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